
Chapter 3: Towards the Simplex Method for Efficient 
Solution of Linear Programs 

The simplex method, invented by George Dantzig in 1947, is the basic workhorse for 
solving linear programs, even today.  While there have been many refinements to the 
method, especially to take advantage of computer implementations, the essential elements 
are the same as they were when the method was invented.  During the Second World 
War, calculations were carried out on manual hand calculators by rooms full of clerks.  
Fortunately today, these calculations are done much more rapidly and accurately by 
digital computers. 

The simplex method has a poor theoretical efficiency, but actually performs extremely 
well in practice.  It is the method of choice for a broad range of small to large problems, 
but the newer interior-point methods are preferred for extremely large problems.  The 
simplex method also has the advantage of making sensitivity analysis easier. 

The goal in this chapter is to give you an understanding of the basic mechanics of the 
method, and to show you why it works.  This will equip you to deal with the inevitable 
unexpected results when you are solving linear programs in practice later in your career. 

Some Definitions 

Here is some fundamental vocabulary for talking about linear programs when they are 
expressed in a graphical manner (refer to Figure 3.1 for examples): 

• solution: any point in the 
variable space.  Could be 
feasible (satisfies all 
constraints), or infeasible 
(violates at least one 
constraint). 

• cornerpoint solution: 
anywhere two or more 
constraints intersect.  Again, 
such a point might be feasible 
or infeasible. 

• feasible cornerpoint solution: 
a cornerpoint solution that is feasi
very interested in feasible cornerpo

• adjacent cornerpoint solutions: 
a single constraint line segment a
are no assumptions about feasibili
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ble.  As we will see later, the simplex method is 
int solutions. 

two cornerpoint solutions that are connected by 
re adjacent cornerpoint solutions.  Again, there 
ty. 
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Key Properties of Linear Programs 

Here are the three key properties of linear programs that drive the design of the simplex 
method: 

1. The optimum point is always at a feasible cornerpoint.  As we saw previously 
(see Figure 2.3), this is a by-product of the fact that all of the constraints and the 
objective function are linear.  Remember that there can also be multiple optima, 
but this will happen only when at least two of the optima are adjacent cornerpoint 
feasible solutions. 

2. If a cornerpoint feasible solution has an objective function value that is better 
than or equal to all adjacent cornerpoint feasible solutions, then it is optimal.  
Again, this is a by-product of modeling with lines. 

3. There are a finite number of cornerpoint feasible solutions. This means that 
any method which concentrates on looking only at cornerpoint feasible solutions, 
as the simplex method does, will eventually terminate.  Good news! 

Think about point 1 for a moment: is it possible to have 3 or more cornerpoints having 
the same optimum value?  Sure, but you have to go to higher dimensions (i.e. problems 
with more variables).  Imagine a problem in 3 dimensions in which the feasible region 
resembles a cube.  Now imagine that the “slope” of the objective function exactly 
matches the “slope” of one of the faces of the cube.  In this case, there will be 4 
cornerpoints all having the exact same optimum value of the objective function! 

These properties have tremendous practical impact.  Property 1 means that you only need 
to look at cornerpoints, rather than at the infinite number of points in the feasible region, 
which is a tremendous boost in efficiency.  Property 2 means that you can easily 
recognize when you have found the optimum point, so you don’t have to look at all of the 
feasible cornerpoints, another boost in efficiency.  Finally, property 3 means that the 
method is guaranteed to terminate, so you will get an answer. 

We now have enough information to provide a bird’s-eye view of the simplex method.  It 
has two main phases: 

1. Phase 1 (start-up): find any cornerpoint feasible solution.  The reason why we 
start our study of linear programming with standard form LPs is that the origin 
(the (0,0,…,0) point) is always a cornerpoint feasible solution in a standard form 
LP, so phase 1 is simple.  Phase 1 is more complicated for non-standard form LPs, 
and requires a special method, which we will cover later. 

2. Phase 2 (iterate): repeatedly move to a better adjacent cornerpoint feasible 
solution until no further better adjacent cornerpoint feasible solutions can be 
found.  This final cornerpoint feasible solution defines the optimum point.  Note 
that there could be other adjacent cornerpoint feasible solutions with the same 
optimum value. 

As shown in Figure 3.2, the sequence of feasible cornerpoints visited in the Acme 
Bicycle Company problem is as follows: 
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1. Phase 1: choose the origin 
(0,0).  The value of the 
objective function at that point 
is zero, expressed as Z(0,0)=0. 

2. Iteration 1: move from (0,0) to 
(2,0).  Z(2,0)=30, an 
improvement. 

3. Iteration 2: move from (2,0) to 
(2,2).  Z(2,2)=50, an 
improvement. 

4. Stop: the only feasible 
cornerpoint not yet visited that 
is adjacent to (2,2) is at (1,3), 
and Z(1,3)=45.  So (2,2) with 
Z=50 is better than both of the 
Z(1,3)=45, so (2,2) is the optimu
objective function is 50. 

 

This means that the Acme Bicycle Compa
2 per day and racers at the rate of 2 per d
day. 

As we will see later, the simplex method 
cornerpoints adjacent to the optimum poin
are no better adjacent feasible cornerpoint

Finding Cornerpoints Algebrai

Graphical representations of linear progra
principles; real problems have hundreds
problems at that scale, we need an algeb
form LPs, the answer lies in converting th
the intersection of a subset of the equa
finding the intersection of linear equation

Note that we must solve for the intersect
usual case not all of the equations de
simultaneously.  So, in addition to conv
way to keep track of which of the equ
resolution of both difficulties lies in the a
convert them to equations.  For example: 

 x1 ≤ 2  becomes x1 + s1 = 2 when t
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Figure 3.2: Visiting cornerpoints in the Acme
Bicycle Company problem.
adjacent feasible cornerpoints: Z(2,0)=30 and 
m point, and the best achievable value of the 

ny should produce mountain bikes at the rate of 
ay to achieve a maximum profit rate of $50 per 

does not actually need to visit all of the feasible 
t.  There is a simple way to recognize that there 
s left to visit. 

cally 

mming problems are only used for teaching the 
, thousands, even millions of variables.  For 

raic way to find the cornerpoints.  For standard 
e inequalities to equations, and then solving for 
tions.  There are well-developed methods for 
s, such as Gaussian elimination. 

ion of a subset of the equations because in the 
rived from the original inequalities can hold 
erting the inequalities to equations, we need a 
alities are currently selected, or active.  The 
ddition of slack variables to the inequalities to 

he nonnegative slack variable s1 is added. 
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Slack variables are so named because they “take up the slack” between the left hand side 
of the equation (in this case just x1) and the right hand side value.  The nonnegativity of 
the slack variable is essential to this role. 

Converting the Acme 
Bicycle Company to 
equality format in this 
way yields the LP 
shown in Figure 3.3.  
The problem, 
originally in two 
dimensions (x1 and 
x2), is now a problem 
in five dimensions 
(x1, x2, s1, s2, s3).  Note that the slack variables take on positive values only when the 
constraint that they appear in is not active. 

 original variables slack variables  
Z = 15x1 + 10x2     

 x1  + s1   = 2 
  x2  + s2  = 3 
 x1 + x2   + s3 = 4 

x1, x2, s1, s2, s3 ≥ 0 
 

Figure 3.3: Equality version of the Acme Bicycle Company problem. 

There is some special terminology when working with the algebraic, equation-converted 
version of the original LP model, as follows: 

• augmented solution: the values for all of the variables are given, including both 
the original variables and the slacks.  For example, at the optimum solution to the 
Acme Bicycle Company problem, the augmented solution is (x1,x2,s1,s2,s3) = 
(2,2,0,1,0). 

• basic solution: an augmented cornerpoint solution (could be feasible or 
infeasible).  In the ABC problem, (2,3,0,0,-1) is a basic solution that happens to 
be infeasible. 

• basic feasible solution: an augmented cornerpoint feasible solution.  In the ABC 
model, (0,3,2,0,1) is a basic feasible solution. 

As you might imagine, the simplex method is mostly concerned with basic feasible 
solutions. 

Setting the Values of the Variables 

Somehow we need to set the values of the variables, and this should be done in such a 
way that we arrive at a feasible cornerpoint, or basic feasible solution.  Consider the ABC 
problem in which we have 5 variables after conversion to equation format, but only 3 
constraints.  This must mean that we can set the value of 2 of the variables arbitrarily, and 
then calculate the values of the other 3 using the equations. 

The number of variables whose values can be set arbitrarily is known as the number of 
degrees of freedom (df) of a problem.  In general, 

df = (number of variables in equation format) – (number of independent equations) 

As we will see later, the simplex method will automatically set the values of df of the 
variables, and then solve for the values of the others.  In fact, simplex will set those df 
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variables to a value of zero.  Why zero?  Because this implies that the corresponding 
constraint is active, i.e. right on it’s limiting value and actively preventing the solution 
process from venturing into the infeasible zone.  Let’s see if this is true for the ABC 
problem.  Considering the equation form of the problem as in Figure 3.3: 

• x1=0 implies that you are on the limiting value of the x1≥0 constraint. 
• x2=0 implies that you are on the limiting value of the x2≥0 constraint. 
• s1=0 implies that you are on the line x1=2. 
• s2=0 implies that you on the line x2=3. 
• s3=0 implies that you are on the line x1+x2=4. 

Because df=2 in the ABC company, that means that simplex will set the values of two of 
the 5 variables to zero.  In other words, this will make two of the constraints active, and it 
will thereby define a cornerpoint where these two constraints cross.  Figure 3.4 shows 
that the selection of which two variables are set to zero can define a feasible, or perhaps 
an infeasible cornerpoint. 

 

 
There a

• 
• 

• 

As we 
variabl
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s2 = 0 

feasible 
region 

cornerpoint 

s3 = 0 

(a) feasible cornerpoint 

cornerpoint 

s2 = 0 

s1 = 0 

feasible 
region 

(b) infeasible cornerpoint 

Figure 3.4: Setting variables to zero defines a cornerpoint. 
re two final items of terminology at this point: 
nonbasic variable: a variable currently set to zero by the simplex method. 
basic variable: a variable that is not currently set to zero by the simplex method.  
Basic variables normally have nonzero values (positive in the case of standard 
form LPs), but they can also be zero in special circumstances.  This means that 
you can’t reliably tell which variables are zero and which are nonzero just by 
looking at their current values. 
a basis: as simplex proceeds, the variables are always assigned to the basic set or 
the nonbasic set.  The current assignment of variables is called the basis. 

develop the simplex method, we will be working intensively with this idea of 
es being set to zero and thereby activating constraints.  You should memorize the 
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following mantra, and chant it to yourself or work it into casual conversations at every 
opportunity: 

 Nonbasic, variable set to zero, corresponding constraint is active. 

The simplex method is all about deciding what the 
current basis is, i.e. which variables are currently 
basic and which are currently nonbasic.  In fact, if 
you were exceedingly lucky, you could solve LPs 
directly just by guessing which variables should be 
basic and which nonbasic.  This then defines the 
active set of constraints, so you can solve for the 
intersection point of the active constraints to find the 
optimum point and the value of the objective function 
at that point.  But there are some pitfalls if you guess 
incorrectly!  Figure 3.4 (b) shows how you could 
select a basis that defines an infeasible cornerpoint.  
Figure 3.5 shows how you might even select a basis 
that does not define a cornerpoint at all. 

feasible 
region 

x1=0 s1=0 

Figure 3.5: A basis that does not 
define a cornerpoint. 

Moving to a Better Basic Feasible Solution 

Given that phase 1 provides us with a basic feasible solution to start from, the simplex 
method then just needs to move to a better basic feasible solution, and to continue doing 
this until the stopping conditions (no better adjacent cornerpoint feasible solution) are 
met.  As we’ve seen above, choosing the next basis cannot be done at random: you might 
choose an infeasible basis, a worse basis, or a basis that does not define a cornerpoint at 
all. 

It turns out that if you are at basic feasible solution (feasible cornerpoint), then the easiest 
basic feasible solution to find next will be adjacent.  This is partly due to the following 
property of adjacent cornerpoints: 

• in two adjacent cornerpoints, the nonbasic sets will be identical, except for one 
member 

• in two adjacent cornerpoints, the basic sets will be identical, except for one 
member. 

For example, consider the two adjacent cornerpoints labeled in Figure 3.1 (these are the 
same cornerpoints shown in Figure 3.4): 

• point A: nonbasic set = {s2, s3), basic set = {x1, x2, s1} 
• point B: nonbasic set = {s1, s2}, basic set = {x1, x2, s3} 

This seems to imply that we can move from one cornerpoint to the next simply by 
swapping a pair of variables between the basic and the nonbasic sets.  Unfortunately, this 
condition is necessary, but not sufficient for adjacency.  For example, the pair of 
cornerpoints at (0,4) and at (4,0) also has this property, but those cornerpoints are not 
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adjacent.  So there are three conditions that must be taken care of while moving from one 
cornerpoint to the next: 

• the cornerpoints must be adjacent, 
• the cornerpoints must be feasible, 
• the new cornerpoint must have a better value of the objective function than the 

current cornerpoint. 

The simplex method has an impressively clever yet simple way of making sure that all 
three conditions are satisfied.  There are two steps: 

1. Determine which nonbasic variable (remember! nonbasic variables are set to zero) 
will increase the objective function value most swiftly if allowed to take on a 
positive value.  Move this variable from the nonbasic set to the basic set.  This is 
called the entering basic variable because it is entering the basic set. 

2. Allow the entering basic variable to increase only until one of the basic variables 
is forced to a value of zero.  Move the variable that is forced to zero from the 
basic set to the nonbasic set, where it will retain its value of zero.  This is called 
the leaving basic variable because it is leaving the basic set. 

How do we determine the variable that most swiftly increases the value of the objective 
function in step 1?  At the origin, this is simply done by looking at the objective function.  
For the ABC problem, Z = 15x1 + 10x2, so it is immediately obvious that x1 provides the 
swiftest rate of increase in Z, because it increases Z by 15 per unit increase in x1, where x2 
increases Z by only 10 per unit increase in x2.  So if we are currently at the basic feasible 
solution at the origin point (0,0), then x1 is chosen as the entering basic variable.  At other 
basic feasible solutions we will work with rewritten versions of the objective function, 
but the basic principle is the same. 

This first step does two things.  First, moving a 
variable out of the nonbasic set inactivates one 
of the equations (remember! nonbasic – set to 
zero – constraint active).  Second, because that 
variable is going to the basic set, we know that 
it is now allowed to increase in value, so this 
gives us a direction in which to move.  Figure 
3.6 shows the effect of starting at the origin and 
choosing x1 as the entering basic variable.  The 
dashed line indicates the position of the x1=0 
constraint, which has just been released. 

current 
cornerpoint 

x1 is the entering 
basic variable 

x1 < 2 

Figure 3.6: Choosing x1 as the entering 
basic variable. 

Step 2 then tells us when to stop increasing the 
value of the entering basic variable.  We can see 
in Figure 3.6 that the correct place to stop 
increasing x1 is when we bump into the limiting 
value of the x1≤2 constraint, otherwise we will move out of the feasible region.  But how 
do we algebraically detect that we have reached the point at which x1=2, i.e. the point at 
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which the x1≤2 constraint becomes active?  The answer is that the variable associated 
with the equation form of x1≤2 is driven to zero before any other variable. 

Look at Figure 3.6 again.  At the origin, the situation is this: 
• basic variables: s1, s2, s3 
• nonbasic variable: x2 
• entering basic variable: x1 

Let us consider the effect of increasing the entering basic variable value on each of the 
constraint equations, as in the Table 3.1.  Basic variables are underlined in the table.  
Note that there is exactly one basic variable in each of the constraint equations.  Its value 
at the origin is shown. 

basic variable constraint equation bound on increase in x1 
s1 = 2 x1+s1 = 2 x1 ≤ 2 
s2 = 3 x2+s2 = 3 no limit 
s3 = 4 x1+x2+s3 = 4 x1 ≤ 4 

Table 3.1: Finding the leaving basic variable. 

Considering the first equation in Table 3.1, you can see that as x1 increases, s1 decreases 
to keep the equation satisfied.  Because s1 must be nonnegative, x1 can only increase until 
s1 becomes zero.  s1 reaches a value of zero when x1 reaches a value of 2.  Because s1 is 
the only basic variable in that equation, it is the only one whose value you have to worry 
about.  Similarly, s3 is the only basic variable in the third constraint equation, so it is the 
only variable that can compensate for an increase in the value of x1 by decreasing its own 
value (x2 is nonbasic, and remember! nonbasic variables are set to zero).  s3 reaches a 
value of zero when x1 reaches a value of 4.  Because x1 does not even appear in the 
second constraint equation, that constraint places no limit on the increase in x1. 

Table 3.1 shows that it is the first constraint equation (based on x1≤2) that most limits the 
increase in x1.  When the basic variable in that equation (s1) is driven to zero, the 
constraint associated with s1 (x1≤2) becomes active.  As you can see in Figure 3.6, this is 
just the constraint to activate to prevent straying out of the feasible region.  Hence s1 is 
chosen as the leaving basic variable. 

At the new cornerpoint defined by the intersection of the limiting values of the two 
constraints x2≥0 and x1≤2, i.e. the point (2,0), the basis is this: 

• basic variables: x1, s2, s3 
• nonbasic variable: x2, s1 

Compared to the basis at the origin point, this represents a swap of x1 and s1 between the 
basic and nonbasic sets. 

Finding the leaving basic variable via the method demonstrated in Table 3.1, as required 
in step 2, depends on having exactly one basic variable per constraint equation, and the 
coefficient of the basic variable being exactly 1.  As we will see later, the simplex method 
makes sure that these conditions are met.  Once this condition is met, we need only to 
look at the value of the following ratio to find the limiting value placed on the entering 
basic variable by a particular constraint equation: 
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right hand side value of constraint equation 
coefficient of entering basic variable in the equation 

Because we are always looking for the most limiting bound on the entering basic 
variable, we need the smallest value of this ratio, so the process of finding the leaving 
basic variable in this manner is called the minimum ratio test. The coefficients of the 
entering basic variable will not always have a value of 1 as they do in Table 3.1: that’s an 
artifact of this simple example. 

There are two special cases of the minimum ratio test, as illustrated in Figure 3.7: 
• if the coefficient of the entering basic variable is zero: this means that the 

constraint in question does not intersect with the still-active constraints 
represented by the remaining nonbasic variables, so it places no limit on the 
increase in the entering basic variable. 

• if the coefficient of the entering basic variable is negative: this means that the 
constraint in question does intersect with the still-active constraints, but the 
direction of increase of the entering basic variable is away from the intersection 
point.  Hence the constraint in question places no limit on the increase in the 
entering basic variable. 

 

Find

Now
next 
varia
by G

Prac
http://w
does not limit 
increase in x1 

(a) coefficient of entering 
basic variable is zero 

does not limit 
increase in x2 

(b) coefficient of entering basic 
variable is negative 

 

Figure 3.7: Why zero or negative coefficients of the entering basic variable do not limit its
increase. 
ing the New Basic Feasible Solution 

 that the new basis is known, how do you actually find the point associated with the 
basic feasible solution?  A possible, but inefficient, method is to set the nonbasic 
bles to zero and then solve the remaining m×m system of linear equations, perhaps 
aussian elimination. 
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A much more efficient method is to update the current set of equations using just a little 
bit of Gaussian elimination.  This step can put the equations back into the format needed 
for applying both the test for selecting the entering basic variable (objective function 
must be rewritten), and the minimum ratio test for selecting the leaving basic variable 
(constraint equations must have exactly one basic variable each, and the coefficient of 
that basic variable must be 1). 

We will hear more about this in the next chapter, which introduces the simplex tableau, 
which is a way of formalizing the steps in the simplex method. 

A related question is this: how do we know when to stop iterating?  This happens when 
we are unable to find an entering basic variable.  In other words, in the updated version of 
the objective function, there is no nonbasic variable that, if allowed to become positive, 
would increase the value of Z.  This means that we don’t actually need to visit the next 
cornerpoint and see that the value of the objective function has worsened: we will already 
know that there is no improving direction to go in!  Details follow in the next chapter. 
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